Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections

Identifieur interne : 001292 ( Main/Exploration ); précédent : 001291; suivant : 001293

Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections

Auteurs : Eric M. Kettleson [États-Unis] ; Jill M. Schriewer [États-Unis] ; R. Mark L. Buller [États-Unis] ; Pratim Biswas [États-Unis]

Source :

RBID : Pascal:13-0204467

Descripteurs français

English descriptors

Abstract

Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of > 0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections</title>
<author>
<name sortKey="Kettleson, Eric M" sort="Kettleson, Eric M" uniqKey="Kettleson E" first="Eric M." last="Kettleson">Eric M. Kettleson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Environmental Health, University of Cincinnati</s1>
<s2>Cincinnati, Ohio</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schriewer, Jill M" sort="Schriewer, Jill M" uniqKey="Schriewer J" first="Jill M." last="Schriewer">Jill M. Schriewer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Molecular Microbiology and Immunology, Saint Louis University</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buller, R Mark L" sort="Buller, R Mark L" uniqKey="Buller R" first="R. Mark L." last="Buller">R. Mark L. Buller</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Molecular Microbiology and Immunology, Saint Louis University</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Energy, Environmental, and Chemical Engineering, Washington University</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0204467</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0204467 INIST</idno>
<idno type="RBID">Pascal:13-0204467</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000002</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000057</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000001</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000001</idno>
<idno type="wicri:doubleKey">0099-2240:2013:Kettleson E:soft:x:ray</idno>
<idno type="wicri:Area/Main/Merge">001294</idno>
<idno type="wicri:Area/Main/Curation">001292</idno>
<idno type="wicri:Area/Main/Exploration">001292</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections</title>
<author>
<name sortKey="Kettleson, Eric M" sort="Kettleson, Eric M" uniqKey="Kettleson E" first="Eric M." last="Kettleson">Eric M. Kettleson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Environmental Health, University of Cincinnati</s1>
<s2>Cincinnati, Ohio</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schriewer, Jill M" sort="Schriewer, Jill M" uniqKey="Schriewer J" first="Jill M." last="Schriewer">Jill M. Schriewer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Molecular Microbiology and Immunology, Saint Louis University</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buller, R Mark L" sort="Buller, R Mark L" uniqKey="Buller R" first="R. Mark L." last="Buller">R. Mark L. Buller</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Molecular Microbiology and Immunology, Saint Louis University</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Energy, Environmental, and Chemical Engineering, Washington University</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied and environmental microbiology : (Print)</title>
<title level="j" type="abbreviated">Appl. environ. microbiol. : (Print)</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied and environmental microbiology : (Print)</title>
<title level="j" type="abbreviated">Appl. environ. microbiol. : (Print)</title>
<idno type="ISSN">0099-2240</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allergen</term>
<term>Allergy</term>
<term>Infection</term>
<term>Microorganism</term>
<term>Precipitation</term>
<term>Protection</term>
<term>X ray</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rayon X</term>
<term>Précipitation</term>
<term>Protection</term>
<term>Allergène</term>
<term>Allergie</term>
<term>Microorganisme</term>
<term>Infection</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Allergie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of > 0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Kettleson, Eric M" sort="Kettleson, Eric M" uniqKey="Kettleson E" first="Eric M." last="Kettleson">Eric M. Kettleson</name>
</region>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<name sortKey="Buller, R Mark L" sort="Buller, R Mark L" uniqKey="Buller R" first="R. Mark L." last="Buller">R. Mark L. Buller</name>
<name sortKey="Schriewer, Jill M" sort="Schriewer, Jill M" uniqKey="Schriewer J" first="Jill M." last="Schriewer">Jill M. Schriewer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001292 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001292 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:13-0204467
   |texte=   Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021